Organic Producers Conference 2010

Biodiversity and Ecosystem

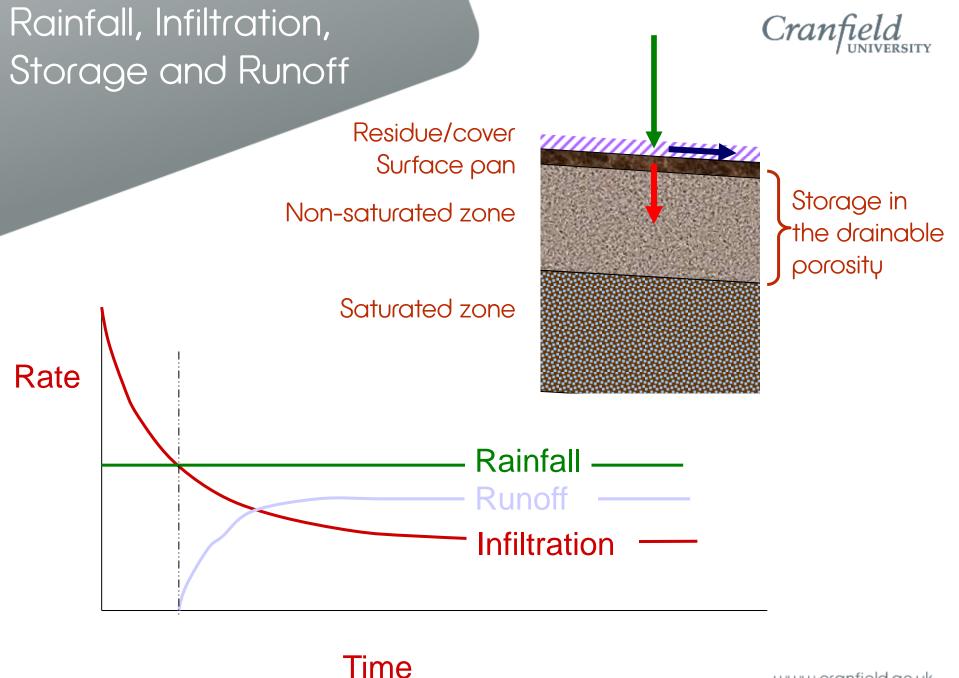
Management impacts on

soil physical structure

and infiltration rates

Laura Hathaway-

Jenkins



http://www.cranfield.ac.uk

Introduction

- An ecosystem service is defined as 'the way the environment produces resources utilised by humans' (Defra, 2009)
- Soil provides a medium to produce food and helps to regulate water flow
- Soil surface management in both arable and grassland farming is very important

Experimental Design

- Eight paired organic and conventional farms
- Four soil types: clay, clay loam, silty clay loam, sandy loam
- Two land uses: arable, grass

Infiltration Rates (mmhr⁻¹)

	Soil Texture (UK soil textural classification)			
Treatment	Clay	Clay Loam	Silty Clay Loam	Sandy Loam
Organic Grass	14.81	1.57	5.67	8.44
Organic Arable	13.42	2.36	4.18	3.64
Conventional Grass	6.38	1.16	0.78	1.80
Conventional Arable	4.87	0.77	6.79	16.20

USDA ~ SCS Hydrologic soil groups

Soil Group	Description	Infiltration (mm h ⁻¹)
A	Lowest Runoff Potential. Includes deep sands with very little silt and clay, also deep, rapidly permeable loess.	8-12
В	Moderately Low Runoff Potential. Mostly sandy soils less deep than A, and loess less deep or less aggregated than A, but the group as a whole has above-average infiltration after thorough wetting.	4-8
С	Moderately High Runoff Potential. Comprises shallow soils and soils containing considerable clay and colloids, though less than those of group D. The group has below-average infiltration after pre-saturation.	1-4
D	Highest Runoff Potential. Includes mostly clays of high swelling percent, but the group also includes some shallow soils with nearly impermeable sub-horizons near the surface.	0-1 www.cranfield.ac.uk

USDA -	Runoff Numbers	(N)
Land Use or crop	Treatment	Condition

Hydrologic Soil Group

C

www.cranfield.ac.uk

D

B

A

Poor

Good

Good

Poor

Good

Poor

Poor

Fair

Good

Poor

Fair

Good

Good

Poor

Fair

Good

USDA - F	Runoff	Numbers	(N)	
			_	

Straight row

Straight row

Contoured

Straight row

Straight row

Contoured

Contoured

Contoured

Contoured

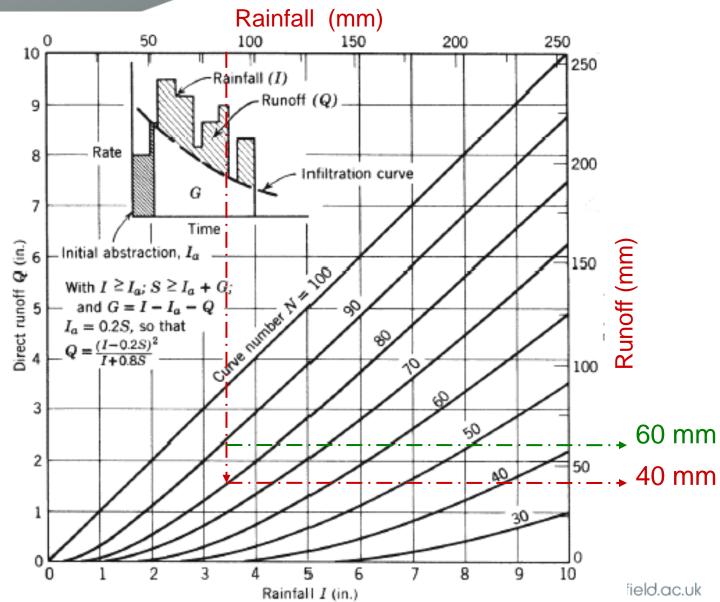
Terraced

Fallow

Row crops

Small grain

Pasture or range


Meadow (permanent)

Woods (farm woodlots)

After: USDA, SCS (1972)

After: USDA, SCS (1972)

Scenario	Good Practice runoff (m ³ s ⁻¹)	Poor Practice runoff (m ³ s ⁻¹)	Runoff ratio good / poor	Reduction in runoff (%)
Conventional	0.90	1.06	0.85	15.00
Organic	0.57	1.02	0.56	44.00

Under poor management there is little difference between organic and conventional dominated landscapes for the amount of runoff.

Scenario	Good Practice runoff (m ³ s ⁻¹)	Poor Practice runoff (m ³ s ⁻¹)	Runoff ratio good / poor	Reduction in runoff (%)
Conventional	0.22	0.46	0.48	42.00
Organic	0.15	0.44	0.34	66.00

Highlights the importance of good soil management even in improved soil conditions.

Degraded soil conditions

Scenario	Good Practice runoff (m ³ s ⁻¹)	Poor Practice runoff (m ³ s ⁻¹)	Runoff ratio good / poor	Reduction in runoff (%)
Conventional	1.55	1.54	1.00	0.00
Organic	1.44	1.56	0.93	7.00

There is little difference in good or poor practices under degraded conditions.

Conclusions and Recommendations

- Good soil management on all soil types is the key to improving infiltration rates and reducing runoff.
- There is little difference between landscape scenarios if the land is managed poorly.
- When good soil management practices are used there is a significant improvement when comparing organic and conventional landscapes.

Any Questions?

Cranfield

Thank you for listening.

